Lecture 2 - January 12

Introduction

Safety-Critical vs. Mission-Critical Formal Methods, Industrial Standards Verification vs. Validation Model-Based Development
chatere
scs

$$
\mathbb{W} S C S \stackrel{\Theta}{\equiv} M C S
$$

(2) STS \Rightarrow MCS
(3)

Mission-Critical vs. Safety-Critical

Safety critical

When defining safety critical it is beneficial to look at the definition of each word independently. Safety typically refers to being free from danger, injury, or loss. In the commercial and military industries this applies most directly to human life. Critical refers to a task that must be successfully completed to ensure that a larger, more complex operation succeeds. Failure to complete this task compromises the integrity of the entire operation. Therefore a safety-critical application for an RTOS implies that execution failure or faulty execution by the operating system could result in injury or loss of human life.

Safety-critical systems demand software that has been developed using a well-defined, mature software development process focused on producing quality software. For this yery reason 3342,4315 (Jomel mpthod)

Mission critical

A mission refers to an operation or task that is assigned by a higher authority. Therefore a mission-critical application for an RTOS implies that a failure by the operating system will prevent a task or operation from being performed, possibly preventing successful completion of the operation as a whole.

Mission-critical systems must also be developed using well-defined, mature
software development processes. Therefore they also are subjected to the rigors of DO-178B. However, unlike safety-critical applications, missioncritical software is typically DO-178B level C or D. Mission-critical systems only need to meet the lower criticality levels set forth by the DO-178B specification.

Generally mission-critical applications include navigation systems, avionics display systems, and mission command and control.

Θ are we buiding the product right？ popery？
\rightarrow Gre we building the right prodct？
goal

Building the product right?

Building the right product?

Certifying_Systems: Assurance Cases

Research on "Assurance Cases" if interested!

=-s

Source: https://audiobookstore.com/audiobooks/failure-is-not-an-option-1.aspx

Correct by Construction: Bridge Controller System

$$
m_{0} \rightarrow \cdots \rightarrow m_{i} \rightarrow m_{J} \rightarrow \cdots \rightarrow m_{n}
$$

Correct by Construction: File Transfer Protocol

